DAVID W. HENDERSON AND DAINA TAIMINA

Crocheting the

nerpolic

Plane

For God’s sake, please give it up. Fear it no less than the sensual passion, because it, too, may
take up all your time and deprive you of your health, peace of mind and happiness in life.
—Wolfgang Bolyai urging his son Janos Bolyai to give up work on hyperbolic geometry

In June of 1997, Daina was in a workshop watching the leader
of the workshop, David, helping the participants study ideas
of hyperbolic geometry using a paper-and-tape surface in
much the same way that one can study ideas of spherical
geometry by using the surface of a physical ball. David’s hy-
perbolic plane was then so tattered and fragile that he was
afraid to handle it much. Daina immediately began to think:
“There must be some way to make a durable model.”

David made his first paper hyperbolic plane in the sum-
mer of 1978, while on canoe trip on the lakes of Maine, us-
ing the scissors on his Swiss Army knife. He had just
learned how to do the construction from William Thurston
at a workshop at Bates College. This crude paper surface
was used in David’s geometry classes and workshops (be-
coming more and more tattered) until 1986, when some
high school teachers in a summer program that David was
leading collaborated on a new, larger paper-and-tape hy-
perbolic surface. This second paper-and-tape hyperbolic
surface (used in classes and workshops for the next 11
years) was the one that Daina witnessed in use.

Daina experimented with knitting (but the result was not
rigid enough) and then settled on crocheting. She perfected
her technique during the workshop and crocheted her first
small hyperbolic plane; then, while camping in the forests
of Pennsylvania, she crocheted more, and we started ex-
ploring its uses. In this paper we share how to crochet a
hyperbolic plane (and make related paper versions). We
also share how we have used it fo increase our own un-
derstanding of hyperbolic geometry. (What are horocycles?
Where does the area formula 72 fit in hyperbolic geome-
try?) We will also prove that the intrinsic geometry of these

surfaces is, in fact, (an approximation of) hyperbolic geom-
etry.

But, Wait! you say. Do not many books state that it is
impossible to embed the hyperbolic plane isometrically (an
isomelry is a function that preserves all distances) as a
complete subset of the Euclidean 3-space? Yes, they do:
For popularly written examples, see Robert Osserman’s
Poetry of the Universe [9], page 158, and David Hilbert and
S. Cohn-Vossen's Geometry and the Imagination [6], page
243. For a detailed discussion and proof, see Spivak’s A
Comprehensive Introduction to Differential Geometry
[10], Vol. III, pages 373 and 381.

All of the references are implicitly assuming surfaces
embedded with some conditions of differentiability, and re-
fer (implicitly or explicitly) to a 1901 theorem by David
Hilbert. Hilbert proved [5] that there is no real analytic iso-
metric embedding of the hyperbolic plane onto a complete
subset of 3-space, and his arguments also work to show
that there is no isometric embedding whose derivatives up
to order four are continuous. Moreover, in 1964, N. V.
Efimov ([2] Russian; discussed in English in Tilla Milnor’s
[8]) extended Hilbert's result by proving that there is no
isometric embedding defined by functions whose first and
second derivatives are continuous. However, in 1955, N.
Kuiper proved [7] that there is an isometric embedding with
continuous first derivatives of the hyperbolic plane onto a
closed subset of 3-space. For a more detailed discussion of
these ideas, see Thurston [11], pages 51-52. The finite sur-
faces described here can apparently be extended indefi-
nitely, but they appear always not to be differentiably em-
bedded (see Figure 12).
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Constructions of Hyperbolic Planes

We describe several different isometric constructions of
the hyperbolic plane (or approximations of the hyperbolic
plane) as surfaces in 3-space.

The hyperbolic plane from paper annuli

This is the paper-and-tape surface that David learned from
William Thurston. It may be constructed as follows: Cut out
many identical annular strips of radius p, as in Figure 1. (An
annulus is the region between two concentric circles, and
we call an annular strip a portion of an annulus cut off by
an angle from the center of the circles.) Attach the strips to-
gether by attaching the inner circle of one to the outer circle
of the other or the straight ends together. (When the straight
ends of annular strips are attached together you get annular
strips with increasing angles, and eventually the angle will be
more than 27.) The resulting surface is of course only an ap-
proximation of the desired surface. The actual annular hy-
perbolic plane is obtained by letting é — 0 while holding p
fixed. (We show below, in several ways, that this limit ex-
ists.) Note that because the surface is constructed the same
everywhere (as 6— 0), it is homogeneous (that is, intrinsi-
cally and geometrically, every point has a neighborhood that
is isometric to a neighborhood of any other point). We will
call the results of this construction the annular hyperbolic
plane. We urge the reader to try this by cutting out a few iden-
tical annular strips and taping them together as in Figure 1.

How to crochet the annular hyperbolic plane
If you tried to make your annular hyperbolic plane from
paper annuli you certainly realized that it takes a lot of time.
Also, later you will have to play with it carefully because
it is fragile and tears and creases easily—you may want just
to leave it sitting on your desk. But there is a way to get a
sturdy model of the hyperbolic plane which you can work
and play with as much as you wish. This is the crocheted
hyperbolic plane.

To make the crocheted hyperbolic plane, you need just
a few very basic crocheting skills. All you need to know is

tape together ]\

s

If this annular
strip is kept flat
on the plane, then
this edge will ruffle,
and this edge will bend
up like the start of a cone.

Figure 1. Annular strips for making an annular hyperbolic plane.
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Figure 2. Crochet stitches for the hyperbolic plane.

how to make a chain (to start) and how to single crochet.
See Figure 2 for a picture of these stitches, which will be
described further in the next paragraph.

Choose a yarn that will not stretch a lot. Every yarn will
stretch a little, but you need one that will keep its shape.
That’s it! Now you are ready to start the stitches:

1. Make your beginning chain stitches (Figure 2a).
(Topologists may recognize that as the stitches in the
Fox-Artin wild arc!) About 20 chain stitches for the be-
ginning will be enough.

2. For the first stitch in each row, insert the hook into
the 2nd chain from the hook. Take yarn over and pull
through chain, leaving 2 loops on hook. Take yarn over
and pull through both loops. One single crochet stitch
has been completed. (Figure 2b.)

3. For the next N stitches, proceed exactly like the first
stitch, except insert the hook into the next chain (in-
stead of the 2nd).

4. For the (N + 1)st stitch, proceed as before, except in-
sert the hook into the same loop as the Nth stitch.

5. Repeat Steps 3 and 4 until you reach the end of the
TOW.

6. At the end of the row, before going to the next row,
do one extra chain stitch.

7. When you have the model as big as you want, you
can stop, just by pulling the yarn through the last loop.

Be sure to crochet fairly tight and even. That's all you need
from crochet basics. Now you can make your hyperbolic
plane. You have to increase (by the above procedure) the
number of stitches from one row to the next in a constant
ratio, N to N + 1—the ratio determines the radius of the
hyperbolic plane (corresponding to p in the former con-
struction). You can experiment with different ratios, but
not in the same model. You will get a hyperbolic plane only
if you increase the number of stitches in the same ratio all
the time.

Crocheting will take some time, but later you can work
with this model without worrying about destroying it. The
completed product is depicted in Figure 3.

A polyhedral annular hyperbolic plane

A polyhedral version of the annular hyperbolic plane can
be constructed out of equilateral triangles by putting 6 tri-
angles together at half the vertices and 7 triangles together



Figure 3. A crocheted annular hyperbolic plane.

at the others. (If we were to put 6 triangles together at every
vertex, then we would get the Euclidean plane.) The pre-
cise construction can be described in three different (but,

in the end, equivalent) ways:

1. Construct polyhedral annuli as in Figure 4, and then tape Figure 4. Polyhedral annulus.
them together as with the annular hyperbolic plane.

2. You can construct two annuli at a time by using the

o

shape in Figure 5 and taping one to the next by joining:

a-—->Ab—->B c—C.

3. The quickest way is to start with many strips, as pictured
in Figure 6a. These strips can be as long as you wish. Then

a:

Figure 5. Shape to make two annuli.

join four of the strips together as in Figure 6b using 5 ad-

ditional triangles. Next, add another strip every place
there is a vertex with 5 triangles and a gap (as at the
marked vertices in Figure 6b). Every time a strip is added,

an additional vertex with 7 triangles is formed.

The center of each strip runs perpendicular to
each annulus, and you can show that each of these
curves (the center lines of the strip) is geodesic be-
cause they all have global reflection symmetry.
This model has the advantage of being con-
structible more easily than the two models above;
however, one cannot make better and better ap-
proximations by decreasing the size of the trian-
gles. This is true because at each sevenfold vertex
the cone angle is (7 X 60°) = 420°, no matter what
the size of the triangles, and the radius of the poly-
hedral annulus will decrease because it is about 1%
times the side length of the triangles (see Figure
4), whereas the hyperbolic plane locally looks like
the Euclidean plane (360°).

Figure 6a. Strips.

Figure 6b. Forming the polyhedral annular hyperbolic piane.
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The hyperbolic soccer ball

Polyhedral models of the hyperbolic plane can also be con-
structed from equilateral triangles by putting 7 triangles at
every vertex (the {3,7} model) or, dually, by putting 3 reg-
ular heptagons (7-gons) together at every vertex (the {7,3}
model). These are difficult to use in practice because they
are “pointy” with cone angles at the vertices of 420° or
385.7...°. In addition, their radii are small (about the length
of a side), and it is not convenient to describe the annuli
and related coordinates.

Since the first version of this paper was written, Keith
Henderson, David’s son, showed us a better polyhedral
model, which he named the hyperbolic soccer ball. The hy-
perbolic soccer ball construction is related to the {3,7} model
in the sense that if a neighborhood of each vertex in the {3,7}
model is replaced by a heptagon (7-sided form), then the re-
maining portion of each triangle is a hexagon. If you use reg-
ular heptagons and regular hexagons, then each heptagon is
surrounded by seven hexagons; and two hexagons and one
heptagon come together around each vertex (see Figure 7).
This is the hyperbolic soccer ball. An ordinary soccer ball
(outside the USA, called a “football”) is constructed by us-
ing pentagons surrounded by five hexagons; and (especially
if made from leather that stretches a little) is a good poly-
hedral approximation of the sphere. The plane can be tiled
by hexagons, each surrounded by six other hexagons.

Because a heptagon has interior angles with 57/7 radi-
ans (= 128.57 . ..%), the vertices of this construction have
cone angles of 368.57 . . .° and thus are much smoother
than the {3,7} and {7,3} polyhedral constructions. The fin-
ished product has a nice appearance if you make the hep-
tagons a different color from the hexagons. As with any
polyhedral construction, it is not possible to get closer and
closer approximations to the hyperbolic plane by changing
the size of the hexagons and heptagons, and again there is
no convenient way to see the annuli.

The hyperbolic soccer ball also has aradius pthat is large
enough to be used conveniently. To calculate the radius, we
first tile the hyperbolic soccer ball by congruent triangles

Figure 7. The hyperbolic soccer ball.
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(see the triangle marked in Figure 7), which each contain a
vertex of the hyperbolic soccer ball, where the curvature of
the hyperbolic soccer ball is concentrated. We can then use
the fact (which we prove at the end of this paper) that in
the hyperbolic plane the area of a triangle is given by

A(A) = <’7T - Zai)pz
where the «; are the interior angles of the triangle. The tri-
angles in the tiling have angles (#/3, 7/3, 27/7), and their
areas can be easily calculated (using ordinary geometry) to
be (1.3851 .. .)s?, where s is the length of the sides of hexa-
gons and heptagons. From this we calculate that the radius
of the hyperbolic soccer ball is p = (3.042 . . .)s. For com-

parison, the radius of a spherical soccer ball is (2.404 . . .)s,
which can be calculated in a similar way.

Hyperbolic planes of different radii {curvature)

Note that the construction of an annular hyperbolic plane
is dependent on p (the radius of the annuli), which can be
called the radius of the hyperbolic plane. As in the case of
spheres, we get different hyperbolic planes depending on
the value of p. In Figure 8 a, b, and c there are crocheted
hyperbolic planes with radii approximately 4 cm, 8 cm, and
16 ¢m. These photos were all taken from approximately the
same perspective, and in each picture there is a centime-
ter rule to indicate the scale.

Note that as p increases the hyperbolic plane becomes
flatter and flatter (has less and less curvature). For both
the sphere and the hyperbolic plane, as p goes to infinity
they become indistinguishable from the ordinary flat
(Euclidean) plane. We will show below that the Gaussian
curvature of the hyperbolic plane is —1/p% So it makes
sense to call this p the radius of the hyperbolic plane, in
agreement with spheres, where a sphere of radius p has
Gaussian curvature 1/p?.

How Do We Know that We Obtain the

Hyperbolic Plane?

Why is it that the intrinsic geometry of an annular hyper-
bolic plane is a hyperbolic plane? The answer, of course,
depends on what is meant by “hyperbolic plane.” There are

e
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Figure 8a. Hyperbolic plane with p~ 4 cm.



Figure 8b. Hyperbolic plane with p~ 8 cm.

four main ways of describing the hyperbolic plane; we hope
one of these is your favorite:

1. A hyperbolic plane satisfies all the postulates of
Euclidean geometry except for Fuclid's Fifth (or
Parallel) Postulate.

2. A hyperbolic plane has the same local (intrinsic) geom-
etry as the pseudosphere.

3. A hyperbolic plane is a simply connected complete
Riemannian manifold with constant negative Gaussian
curvature.

4. A hyperbolic plane is described by the upper half-plane
model.

The italicized terms will be explained as we deal with
each description in the sections that follow. But first we
consider natural coordinates that we will find useful.

Intrinsic geodesic coordinates

Let p be the fixed inner radius of the annuli, and let Hs be
the approximation of the annular hyperbolic plane con-
structed, as above, from annuli of radius p and thickness
8. On Hg pick the inner curve of any annulus, calling it the
base curve, pick a positive direction on this curve, and pick
any point on this curve and call it the origin O. We can now
construct an (intrinsic) coordinate system x5: R — Hj by
defining x5(0, 0) = O, x5(w, 0) to be the point on the base
curve at a distance w from O, and x5(w, s) to be the point
at a distance s from xs(w, 0) along the radial (along the
radii of each annulus) curve through xs(w, 0), where the
positive direction is chosen to be in the direction from outer
to inner curve of each annulus (see Figure 9). The reader
can easily check that this coordinate map is one-to-one
and onto (if you were to crochet indefinitely). Let x =
lim x;5: R? — H?, the annular hyperbolic plane.

Note that each coordinate map x5 induces a metric, ds,
on R? by defining ds(p, q) to be the (intrinsic) distance be-
tween x5(p) and x5(q¢) in Hs Those readers who desire a
more formal description of the limit can check that, in the
limit as 8 — 0, the metrics ds converge to a metric d on R?,
and this defines the annular hyperbolic plane as R? with a
special metric. In fact, this process also defines a

Figure 8c. Hyperbolic plane with p~ 16 cm.

Riemannian metric, but this will be easier to see after we
show the connections with the upper half-plane model.

What can we experience about hyperbolic

geodesics and isometries?

The following facts were observed by our students during
one class period in which, working in small groups, they
explored for the first time the crocheted hyperbolic plane.

The radial curves are geodesics with reflection sym-
metry. The radial curves (curves that run radially across
each annulus) have intrinsic reflection symmetry in each H;
because of the symmetry in each annulus and the fact that
the radial curves intersect the bounding curves at right an-
gles. These reflection symmetries carry over in the limit to
the annular hyperbolic plane. Such bilateral symmetry is the
basis of our intuitive notion of straightness (see Chapters 1
of references [3] and [4] for more details), and thus we can
conclude that these radial curves are geodesics (intrinsically
straight curves) on the annular hyperbolic plane and that
reflection through these curves is an isometry.

The radial geodesics are asymptotic. Looking at our hy-
perbolic surfaces, we see the radial geodesics getting closer
and closer in one direction and diverging in the other di-
rection. In fact, let A and u be two of the radial geodesics
in H;. The distance between these radial geodesics changes
by p/(p + &) every time they cross one annulus. (Remember,
the annuli all have the same radii.) If we cross n strips, then
the distance in Hs between A and p at a distance ¢ = nd
from the base curve is:

p "o p /S
d(ﬂ+5> "d(/ﬂf 5) '

Now take the limit as § — 0 to show that the distance be-
tween A and w on the annular hyperbolic plane is:

d exp(—c/p). Q)

Asymptotic geodesics never happen on a Euclidean plane
or on a sphere.
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Figure 9. Geodesic coordinates on an annular hyperbolic piane.

There is an isometry that preserves the annuli. Because
reflections through radial geodesics are isometries that pre-
serve each annulus, the composition of two such reflections
must also be an isometry that preserves each anmulus. A brief
consideration of what happens on a given annulus should
convince us that this isometry shifts the annulus along itself.
In the plane we would call such an isometry a rotation (about
the center of the annulus). But, on the annular hyperbolic
plane, an annulus has no center and the isometry has no
fixed point because the radial geodesics (which are perpen-
dicular to the annulus) do not intersect. Also, we do not want
to call this isometry a translation because there is no geo-
desic that is preserved by the isometry. So, this is a type of
isometry that we have not met before on the plane. Such
isometries are traditionally called horolations, and annular
curves are traditionally called horocycles. Horolations can
be thought of as rotations about a point at infinity (since the
radial geodesics are asymptotic), and the horocycles can be
thought of as circles with infinite radius.

Other geodesics can be found in approximate intu-
itive ways.

¢ Hold two points of the hyperbolic surface between the
index finger and thumb on your two hands. Now pull gen-
tly—a geodesic segment (with its reflection symmetry)
should appear between the two points. This is using the
property that a geodesic is locally the shortest path.

o I'old the surface to a crease with bilateral symmetry.

* You can lay a (straight) ribbon on the surface and it will
follow a geodesic. This Ribbon Test for geodesics on sur-
faces is discussed further (with proofs) in reference [3],
Problems 3.4 and 7.6.
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The following properties of geodesics can be easily ex-
perienced by playing with the annular hyperbolic plane.
These properties can be rigorously confirmed later by us-
ing the upper half-plane model.

G1. Every pair of points is joined by a unique geodesic.
G2. Two geodesics intersect no more than once.

G3. Every geodesic segment has a geodesic perpendic-
ular bisector.

G4. Every angle (between two geodesics) has a geodesic
angle bisector.

G5. Each non-radial geodesic is tangent to one annu-
lus, and then, as you travel in both directions from that
point, the geodesic approaches being perpendicular to
the annuli that it crosses on the way to infinity.

Connections to Euclid’s postulates
Euclid’s five postulates in modern wording are:

Pl. A (unique) straight line may be drawn from any
point to any other point.

P2. Every limited straight line can be extended indef-
nitely to a (unique) straight line.

P3. A circle may be drawn with any center and any
radius.

P4. All right angles are equal.

P5. If a straight line intersecting two straight lines
makes the interior angles on the same side less than
two right angles, then the two lines (if extended indef-
initely) will meet on that side on which the angles are
less than two right angles.
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cross-section of surface

AZ

Figure 10. Hyperbolic surface of revolution.

We will have to wait for the analytic power of the up-
per half-plane model to confirm rigorously these proper-
ties for the annular hyperbolic plane, but we can give in-
tuitive arguments now. It is easy to convince yourself that
the first three postulates are true by playing with the an-
nular hyperbolic plane, but the other two take some more
thought.

All right angles are equal. What does this postulate
mean? How is it possible to imagine right angles that are
not equal? To see this we must look at Euclid’s definition
of “right angle”

When a straight line intersects another straight line
such that the adjacent angles are equal to one another,
then the equal angles are called right angles.

By this definition, the right angles at a vertex of a poly-
hedron are less than 90° and thus any polyhedron can not
satisfy Euclid’s Fourth Postulate. To show that the annu-
lar hyperbolic plane satisfies this postulate, consider a
right angle « at the point P defined by the lines lp and mp
and another right angle B at @ defined by I and m¢. Then,
by reflecting R in the perpendicular bisector (see G3) of
the line segment FQ— (see G1), the point P is taken to the
point §; one or two more reflections through the bisec-
tors (see G4) of the angles defined by the sides of R(«a)
and B will eventually bring the reflected image of « into
coincidence with S.

Euclid’s Fifth Postulate. Consider two radial geodesics
intersected by the geodesic I determined by intersections
of these radial geodesics with a given annulus curve. The
radial geodesics do not intersect, even though it is clear
that they make angles on the same side of [ that are each
less than a right angle. Thus Euclid’s Fifth Postulate does
not hold on the annular hyperbolic plane.

In many treatments of axiomatic geometry, Euclid’s
Fifth Postulate is replaced by

A\

<4 R(z)
AR
Figure 11. Relating R{z), p, Az, and AR.

(Playfair’s) Parallel Postulate: Givern a line l and a
point P not on 1, there is a unique line through P that
is parallel to 1.

Since any two geodesics (great circles) on a sphere in-
tersect, it is clear that Euclid’s Fifth Postulate is true on a
sphere while Playfair’'s Postulate is not true, contrary to the
statements in many books that the two are equivalent. The
correct statement is that they are equivalent in the pres-
ence of all the other postulates.

Connection to the pseudosphere
Take the annulus whose inner edge is the base curve and
embed it isometrically in the 2~y plane as a complete annu-
lus with center at the origin. Now attach to this annulus por-
tions of the other annuli as indicated in Figure 10. Note that
the second and subsequent annuli form truncated cones.
Let the vertical axis be the z-axis; then at each 2 we have
the picture in Figure 11.
Thus

AR _ —R(z)
Az Vip+ 8)? — R(@?*

In the limit as 6 (and AR and Az) go to zero, we get

dR __ -R@ _ )
&= VE-REY )

We can get the same differential equation by using (1)
above, which implies that the circle at height z has cir-
cumference 2mpe”¥?, where s is the arc length along the
surface from (0, ) to (2, R(2)). We can solve this differen-
tial equation explicitly for z:

\N/ A2 — P2
= pz‘RZ—plnPi“‘I%—“—ﬁ*

Here z is a continuously differentiable function of R and
the derivative (for z # 0) is never zero, hence R is also a
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Figure 12. Crocheted pseudosphere.

continuously differentiable function of z. Because R is
never zero, we can conclude that this hyperbolic surface
of revolution is a smooth surface (traditionally called the
pseudosphere). Thus,

THEOREM: The pseudosphere is locally isometric to the
annular hyperbolic plane.

We can also crochet a pseudosphere by starting with 5
or 6 chain stitches and continuing in a spiral fashion, in-
creasing as when crocheting the hyperbolic plane (see
Figure 12). Note that, when you crochet beyond the annu-
lar strip that lies flat and forms a complete annulus, the
surface begins to form ruffles and is no longer a surface of
revolution. In fact, it appears that it is not even differen-
tiable where the ruffles start, for the “top ridge” of the ruf-
fles (see Figure 12) appears to be straight and thus not tan-
gent to the plane of the complete annulus.

Connections to Riemannian manifolds with constant
negative Gaussian curvature
If a surface is differentiably embedded into 3-space by an
isometry whose first and second derivatives are continu-
ous (C%), then the surface is said to be a Riemannian man-
ifold. At a given point P on the surface, call the normal
direction one of the two directions that are perpendicu-
lar to the surface at that point. The normal curvature at
a point of a curve on the surface is defined to be the com-
ponent of the curvature of the curve that is in the normal
direction. The collection of all normal curvatures of all
the (smooth) curves through P has a maximum and a min-
imum value. These extremal values of the normal curva-
ture are the principal curvatures (and can be shown to be
the normal curvatures of two curves that are perpendic-
ular at P). The Gaussian curvature of the surface at P is
defined to be the product of these two principal curva-
tures.

The pseudosphere is a Riemannian surface, and at each
point [z, R(2), 6] the principal curvatures are the normal
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curvatures of generating curves, 2 +> R(2) and the circle
60— [R(2), 6]. The curvature of the first curve is

—R'(2)
[1+ (R ()%

and is perpendicular to the surface, and thus is also (*)
normal curvature. The curvature of the circle is /R(2),
which must be projected onto the direction perpendicular
to the surface, giving the normal curvature as

1
R(V1+ (R'(@)?

We do not have a formula for R, but we do have a formula
(2) for R'(2). The Gaussian curvature is then the product
of these two normal curvatures, which you can check [us-
ing (2)] is —1/p% the minus sign occurs because the two
normal curvatures are in opposite directions. Thus, the
pseudosphere has constant negative Gaussian curvature.
Gauss’s famous Theorema Egregium states that the
Gaussian curvature is independent of the (C?) embedding,
hence is an intrinsic property of the surface. Thus, since
the annular hyperbolic plane is locally isometric to the
pseudosphere, we can say it also has constant negative
Gaussian curvature. Most differential geometry texts give
intrinsic methods for determining the Gaussian curvature,
which can be applied directly to the annular hyperbolic
plane (see [3], Problem 7.7, for two such methods). Note
that in the crocheted pseudosphere (Figure 12) there are
points that apparently have no tangent planes and thus no
normal direction, and therefore it is not possible to define
(at these points) the principal curvatures. In addition, the
result of N. V. Efimov [2] already discussed shows that, no
matter how the annular hyperbolic plane is placed in 3-
space, if it is extended enough it cannot be C2 embedded
(and thus cannot have principal curvatures at all points).

Connection to the upper half-plane model

As shown above, the coordinate map x preserves (does not
distort) distances along the (vertical) 2nd coordinate
curves, but at x(a, b) the distances along the 1st coordinate
curve are distorted by the factor of exp(—b/p) when com-
pared to the distances in R% To be more precise:

DEFINITION: Let y:A— B be a map from one metric
space lo another, and let t— A(t) be a curve in A. Then, the
distortion of y along A at the point p = A0) is defined as:

. arc length along y(\) from y[A(x)] to y[A(0)]
o) arc length along A from A(x) to A(0)

We seek a change of coordinates that will distort dis-
tances equally in both directions. The reason for seeking
this change is that if distances are distorted to the same de-
gree in both coordinate directions, then the map will pre-
serve angles. (We call such a map conformal.)

We cannot hope to have zero distortion in both coordi-
nate directions (if there were no distortion then the chart
would be an isometry), so we try to make the distortion in
the 2nd coordinate direction the same as the distortion in



the Ist coordinate direction. After a little experimentation,
we find that the desired change is

z(x, y) = x[x, p In(y/p)]
with the domain of z being the upper half-plane
R** = {(z,y) € R*[y > 0)

where x is the geodesic coordinate map defined above. This
is the usual upper half-plane model of the hyperbolic plane,
thought of as a map of the hyperbolic plane in the same
way that we use planar maps of the spherical surface of
the earth.

LEMMA: The distortion of z along both coordinate curves
x— z(x, b) and y — z(a, y)

at the point z(a, b) is p/b.

PROOF. We now focus on the point z(a,b) = x(a,

pin(b/p)). Along the first coordinate curve, xr — z(x, b) =

x(x, pIn(b/p)), the arc length from x(a,c) to x(x,c) is

\x - a\ exp(—c¢/p) by (1) above. Thus, we can calculate the
distortion:

i %= @ expl=[p In(v/p)/pl
m

X—>a ‘.% - a\ = p/b.

Now, look at the second coordinate curve, y — z(a, y) =
x(a, pIn(y/p)). Along this coordinate curve (a radial geo-
desic) the speed is not constant; but, since the second co-
ordinate of x measures arc length, the arc length from
z(a, ¥) = x(a, pIn(y/p)) to z(a, b) = x(a, pIn(b/p)) is

o n(y/p) — pn(b/p)

and the distortion is

i (2W/P) = pIn®/p)
y—b ly = b|

In(y/p) = In(b/p)
Y-

d
= p|— In(y/, = p/b.
p} y W/p) v P
In the above situation, we call these distortions the dis-
tortion of the map z at the point p and denote it dist(z)(p).
Thus,

dist(z)((a, b)) = p/b

Hyperbolic Isometries and Geodesics

We have seen that there are reflections in the annular hy-
perbolic plane about the radial geodesics, but we saw the
existence of other reflections and geodesics only approxi-
mately. However, we were able to see that non-radial geo-
desics appear to be tangent to one annulus and then in both
directions from that point to approach being perpendicu-
lar to the annuli. To assist us in looking at transformations
of the annular hyperbolic space, we use the upper half-
plane model. As the annuli correspond to horizontal lines
in the upper half-plane model, geodesics should then be
curves that start and end perpendicular to the boundary x-
axis. Semicircles with centers on the x-axis are such curves,

and we can show directly that they are geodesics with bi-
lateral symmetry. In particular, we can show directly that
inversion in a semicircle corresponds to a reflection isom-
etry in the annular hyperbolic plane.

DEFINITION: An inversion with respect to a circle T is
a transformation from the extended plane (the plane with
oo, the point at infinity, added) to itself that takes C, the
center of the circle, to « and vice versa and that takes a
point at a distance s from the center to the point on the
same ray (from the center) that is at a distance of r%/s from
the center, where 7 is the radius of the circle (see Figure
13). We call (P, P") an inversive pair because (as the reader
can check) they are taken to each other by the inversion.
The circle I is called the circle of inversion.

Inversions have the following well-known properties (see
reference [1], Chapter 5, and reference [4], Chapter 14):

¢ Inversions are conformal.

* Inversions take circles not passing through the center of
inversion to circles.

¢ Inversions take circles passing through the center of in-
version to straight lines not through the center of inver-
sion.

If f is a transformation taking the upper half-plane R?*
to itself, then consider the diagram

We call g = z o £ o 27! the transformation of HZ that cor-
responds to f. We will call f an isometry of the upper half-
plane model if the corresponding g is an isometry of the
annular hyperbolic plane.

THEOREM: Let £ be the inversion in a circle whose cen-
ter is on the x-axis. Then the corresponding g =zofoz™!
has distortion 1 at every point and is thus an isomelry.

PROOF. (Refer to Figure 14.)

1. Note that each of the maps z, z7!, f is conformal and
has at each point a (non-zero) distortion that is the same

Figure 13. Inversion with respect to a circle.
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Figure 14. Hyperbolic reflections correspond to inversions.

for all curves at that point. Using the definition of dis-
tortion, the reader can easily check that

dist(g)(p)
= dist(z)((f o z~V)(p)) X dist(H)(z " '(p)) X dist(z~ (D).

2. If z(a, b) = p, then, using (1),

dist(z~)(p) = I/[dist(z)((z"'(®))] = b/p.

3. Let r be the radius of the circle C which defines £, and
let s be the distance from the center of C to (a, b) =
z71(p). The inversion being conformal, the distortion is
the same in all directions. Thus, we need only check the
distortion along the ray from C, the center of circle,
through p. The reader can check that this distortion

dist(H)((a, b)) = r/s.

One way to do this is to note that, in this case, the dis-
tortion is the speed (at s) of the curve ¢ — r2/t.

4. By (1), dist(z)(f(z"'(p)) = p/c, where ¢ is the y-coordinate
of £z 1(p)) = £(a, b). To determine ¢, look at Figure 14.
By similar triangles, s/b = (r#/s)/c. Thus ¢ = b(r?%s?) and

,
dist(z)((£ 0 2 H(p) = 2.

5. Putting everything together, we now have

pszyzb:

br? s% p

dist(g)(p) =

Since this is true at all points p, the map g must be an isom-
etry of the annular hyperbolic plane.

We call these inversions through semicircles with cen-
ter on the x-axis (or the corresponding transformations
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in the annular hyperbolic plane) hyperbolic reflections.
Thus the images of the semicircles in the upper half-plane
have bilateral symmetry and so are intrinsically straight
(geodesics).

We have established that the annular hyperbolic plane is
the same as the usual upper half-plane model of the hyper-
bolic plane. The usual analysis of the hyperbolic plane can

Figure 15. Triangle with an ideal triangle and three 2/3-ideal triangles.
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Figure 16. Ideal triangles in the upper haif-plane model.

now be considered as analysis of the intrinsic geometry of
the annular hyperbolic plane. We give only one example here
because it results in the interesting formula 772,

Area of Hyperbolic Triangles

Given a geodesic triangle with interior angles 8; and exte-
rior angles «;, we extend the sides of the triangle as indi-
cated in Figure 15.

The three extra lines are geodesics that are asymptotic
at both ends to an extended side of the triangle. It is tra-
ditional to call the region enclosed by these three extra ge-
odesics an ideal triangle. In the annular hyperbolic plane
these are not actually triangles because their vertices are
at infinity. In Figure 15 we see that the ideal triangle is di-
vided into the original triangle and three “friangles” that
have two of their vertices at infinity. We call a “triangle”
with two vertices at infinity a 2/3-ideal triangle. You can
use this decomposition to determine the area of the hy-
perbolic triangle. First we must determine the areas of ideal
and 2/3-ideal triangles.

It is impossible to picture the whole of an ideal triangle
in an annular hyperbolic plane, but it is easy to picture ideal
triangles in the upper half-plane model. In the upper half-
plane model an ideal triangle is a triangle with all three
vertices either on the x-axis or at infinity (see Figure 16).

At first glance it appears that there must be many dif-
ferent ideal triangles; however:

THEOREM: All ideal triangles on the same hyperbolic
plane are congruent.

PROOF OUTLINE: Perform an inversion (hyperbolic re-
flection) that takes one of the vertices (on the z-axis) to
infinity and thus takes the two sides from that vertex to
vertical lines. Then apply a similarity to the upper half-
plane, taking this to the standard ideal triangle with ver-
tices (—1.0), 0, 1), and « (see Figure 16).

THEOREM: The area of an ideal iriangle is mp?.
(Remember, this p is the radius of the annuli, and equal to
V —1/K, where K is the Gaussian curvature.)

PROOF: By (3), the distortion dist(z)(a, b) is p/b, and thus
the desired area is

&0
-1,0) (L0)
Figure 17. 2/3-ideal triangles in the upper half-plane model.

[ (2] v as = m

We now picture in Figure 17 2/3-ideal triangles in the
upper half-plane model.

THEOREM: All 2/3-ideal triangles with angle 8 are con-
gruent and have area (7w — §)p?.

Show, using inversions, that all 2/3-ideal triangles with
angle @ are congruent to the standard one at the right of
Figure 17 and thus that the area is the double integral:

cos 8 x p 2
f f (——) dy dx.
-1 NVIT2\Y
Combining these three theorems and Figure 15 we get:

THEOREM: The area of a hyperbolic triangle is
(TS’ - Zal)pz
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