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What Is Topology?

Topology is a fairly new branch of mathe-
matics, and it may seem odd to talk of experiments
in mathematics unless one is, so to speak, at the
front line—so advanced that one can hope to
make a new contribution

while we are assuming
that the reader knows nothing of the subject. But
perhaps because it is so new, additions can be made
at the side, like branches, if not at the top. Also
certain experiments can be made that, while add-
ing nothing, still help one to understand this rather
elusive subject.

Topology is curiously hard to define, whereas
the following are much less so. Arithmetic: “The
science of positive real numbers” (Webster’'s New
Collegiate Dictionary), or: “The art of dealing
with numerical quantities in their numerical rela-
tions” (Encyclopaedia Britannica, 11th ed.). Al
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gebra: “The generalization and extension of arith-
metic” (Enc. Brit., 11th). Mark Barr defined
mathematics as being “devised to keep facts in
abeyance while we dispassionately examine their
relations,” but this definition applies especially to
algebra. Geometry: “The study of the [mathe-
matical] properties of space” (Ewnc. Brit., 11th).
Topology started as a kind of geometry, but it has
reached into many other mathematical fields. One

l might almost say it is a state of mind—and is its

}Iown goal. (Later we shall see that this last phrase
| has a topological sound to it.)

In one sense it is the study of continuity: begin-
ning with the continuity of space, or shapes, it
generalizes, and then by analogy leads into other
kinds of continuity—and space as we usually un-
derstand it is left far behind. Really high-bouncing
topologists not only avoid anything like pictures
of these things, they mistrust them. This is partly
because it is not only impossible to make a visually
recognizable picture of some of their “spaces,” but
meaningless. We can, however, get to an under-
standing of their goal by easy stages, and by look-
ing at certain shapes (or “spaces”) from the to-
pologists” point of view, if we start with ones that

| we can see and feel.

A topologist is interested in those properties of a
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thing that, while they are in a sense geometrical,
are the most permanent—the ones that will survive
distortion and stretching. vl oSy

The roundness of a circle obviously will not:
one can tie or glue the ends of a bit of string to-
gether and make it into a circle, and, without cut-
ting or disconnecting it, make it into a square.
But the fact that it has no ends remains unchanged,
and if we had strung numbered beads on it they
would retain their order even if we tied it in knots,
provided we count along the string, like a crawling
bug (Fig. 1). This would also be true if we used
elastic instead of string, because we could only

alter the distance between the beads—not the1rj

order.

Fig. 1

In projective geometry we get somewhat the
same state of affairs: a straight line casts a
straight shadow, and a triangle will give a tri-
angular shadow at any angle, even when its own
angles change. In topology, though, the straight
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line doesn’t have to remain straight: but it retains
the quality of being continuously connected along
itself, and with its ends disconnected—or not, as
the case may be. (The latter could be so if the line
were drawn on a globe, and regarded as straight
by the crawling bug, who would report that it did
not deviate to either side: like the equator.) It is
this connectedness, this continuity, that topology

e o B

' holds on to, and for this reason distortions are
only allowed if one does not disconnect what was
connected (like making a cut or a hole), nor con-
nect what was not (like joining the ends of the
previously unjoined string, or filling in the hole).

According to this rule, we can take a lump—say
round—ot clay and make a cup, but we cannot give
it a handle because of the hole in the handle. How-
| ever we could make both cup and handle from a
\ doughnut-shaped piece (Fig. 2).

@H@

Fig. 2 \
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To be more explicit: we are allowed to make a
break, provided we rejoin it afterward. For ex-
ample, some topologists have said that one can
change or distort the first arrangement of a loop
of string in Fig. 3 into the second, without alter-

-/ ..

ing its connectedness. It is true that both are con-
nected the same way, but we obviously cannot do
it with string without cutting it and re joining: but
that is allowed. Some say it is possible to do in a
4-dimensional space, but perhaps this modification
of the no- cutting—or joining rule is clearer at this

Another example of thlb is that one cannot make
a flat plate without a hole in it from the doughnut-
shaped piece. The latter, incidentally, is called a
torus. These characteristics—like having or not
having a hole—are called_topol ogical invariants.
Sometimes one finds one that turns out to be
merely the result of another, but we need not insist
on this fact right now.

The lump of clay without a hole is called simply
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wply cxve—ecteo]
cmﬁected and as a result of being so, we find that,

if we draw a circle—or any closed curve—on it
(Fig. 4), it divides the whole surface into two:
the part inside and the part outside, just as it

f@kf’ L Fig. 4

would on paper. The equator does this for the
globe, except that it would be hard to say which
was the “inside” and which the “outside,” but at
least it does divide the surface in two.

Now, if we draw another circle, it will either not
cut or intersect the first one at all, or it will do so
in two places. This means “cut” in the sense of
going right through and not merely touching, like
the two circles in Fig. 5. This is because if we

Fig. 5

start drawing the second circle at a point outside
the first, and then cross over into the mside, we
cannot get back to the outside to finish the new
circle—to join the new line to the point we started
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at—unless we cross over again, The same applies
when we start inside. '
Now take the case of the torus (doughnut, Fig.
6). First draw the line L. We can see that it has
not divided the whole surface into two, and so, if
we start a second circle at any point, say P, this
point is neither inside nor outside th.e circle L.
Therefore if we cross L, the dotted line we are
making is not necessarily barred by the line L
from returning to P. As the drawing shows, we
can have two circles that intersect at one point only.

- Fig. 6

This fact—not true of a simply connected surface
with no holes—is true of anything with a hole, and
is a topological invariant. '
As was pointed out before, a torus can be .dls—
torted into anything with one hole; and a circle
into any closed curve that does not join itself any-
where, except for being joined into an endless lme
The latter kind are called Jordan curves, after ‘the _
mathematician who proved that they divide the
surface into two distinct regions, which have no
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points in common but which have the curve as a
common boundary—provided the curve is drawn
on a simply connected surface: e.g., a plane or a
sphere. This may seem to be obvious, but it is un-
expectedly difficult to prove. A Jordan curve that
divides the surface in two can be drawn on a torus,
so long as it does not circle the hole, or go through
it, as the ones in Fig. 6 do. But on a plane or a
sphere all Jordan curves divide the surface in two:
while on a torus they do not do so necessarily.
When one shape or curve can be distorted into an-
other, following our rule, they are said to be home-
omorphic to one another.

If we draw a triangle on a lump of clay, it is con-
 ceivably possible to distort it homeomorphically
so as to get rid of the three angles and make it into
a circle, but if we mark or otherwise identify the
apexes as points on the line, they will remain on it,
if we draw ﬁlg. 7, whxch 1s one closed curve ]omed
at two distinct points by another, no distortion that
follows our rule can change tl that 1t description of the

Fig. 7
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ficure. Not only will the two joints remain as
joints, but no new ones will appear, as that would
mean making a new connection. Thus a sphere with
its equator, and another line connecting with the
equator at two points, p and p’ (Fig. 8), cannot
be distorted so that the arrangement of these lines
is altered topologically (Figs. 9-10).

Fig. 8

Fig. 9

Fig. 10

Fig. 9 shows the whole arrangement of lines
pulled around onto this side, and bent into arbi-
trary shapes. (One may distort a drawing on a
surface, if we follow the rule.) We see that it still
divides the surface into three areas; it still consists
of three segments of line, wllJ_ch stlll meet at two

————— ______,._..

the kind that topologists are concerned with.
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1 Euler’s Theorem
Ju /‘Y 40 A prime example of topological invariants comes
) “from a theorem the Swiss mathematician Leon-

proof will then include Euler’s, and be, unex-
pectedly, easier to follow. First, remembering that
in topology we can bend lines, let us draw the tetra-
hedron on a sphere (Fig. 12). We still have (com-

 hedra: solid geometrical figures, like the cube, or |

the tetrahedron (Fig. 11), i.e., solids which are
bounded by flat planes (faces) which have straight
edges and the edges meet at points, or corners,
called vertices. You can have more complicated

a
~ Vertex

TETRAHEDRON P
Fig. 11

polyhedra with as many faces as you wish: but
never less than 4, as in the tetrahedron. Euler
proved that if you add the number of faces to the
number of vertices, and subtract the number of
edges, you always get 2 for an answer. no matter
how complex the polyhedrggj

Instead of giving the proof, we shall generalize
this rule still further in a topological way. The

10

pare it to Fig. 11) 4 faces (no longer flat but bulg-
ing), 6 edges (now curved), and 4 vertices. With

Fig. 12
N—
Euler’s rule: 4 faces plus 4 vertices minus 6 edges
equals 2. F—E-4V==2 is the way most books
give the equation. Now, as we saw in Fig. 9, page
9, we can pull this whole arrangement of lines
around to the front (if we make no breaks or new
joints) and get Fig. 13. We still have the 4 vertices,

a,b,c,and d, and the 6 edges joining them. Three of
the original 4 faces are the triangles 1, 2, and 3,

‘ Fig. 13
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and the fourth is the space outside the new figure.

It is still, topologically speaking, a triangle, as it

is bounded by the same 3 edges. This can be drawn

on flat paper—all polyhedra can, though in some

cases they are hard to recognize—if we remember

that the blank space around the figure represents
_the missing face.

As we said, in topology you can distort if you
don’t alter the way a figure is connected, and in the
case of a polygon, although you may smooth out
the angles, you must retain the vertices as points
marked on 1t. The pentagon on the left of Fig. 14
becomes the figure on the right, but still has its g
vertices, and edges: There are certain rules about
the way faces, edges, and vertices can be connected
in polyhedra—quite complicated—one being that
4 faces is the minimum, another: a vertex is the
meeting place of at least 3 edges, and so on, but I
am going to generalize Euler’s rule to apply to dny
figure we can draw, provided it follows these rules:

1 Fig. 14 1
2
3 2
3
4 3 4
Pentagon Topological
Pentagon
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It must be completely connected: no unattached
parts. |Every line has a vertex at its free end if
there are any free ends, and where it touches or
crosses another line—which might be at a previ-
ously made vertex. Any enclosure counts as a face,
including the outside space. It must be drawn on
a simply connected surface—no doughnuts al-
lowed, because then the rule—the formula—
changes. We now find that the Euler theorem is,
rather surprisingly, easier to prove—or at least to
follow, and if we prove the foregoing, we shall
have proved it for polyhedra, too. We start with a
single line (Fig. 15), and since it has 2 free ends
and encloses nothing, it gives 1 face (the space

K_J Fig. 15 Fig. 16

v

around it), 1 edge (itself), and 2 vertices. In
the somewhat unorthodox notation used in the
following equations, where a number is followed
by a space and then a letter, it indicates what the
number is of ; 2 V means 2 vertices, thus identify-
ing the 2. 1 F—1 E+2 V=2 If we now join the
ends (Fig. 16) it is regarded as making a vertex,
which can be put anywhere on the line arbitrarily.
This has enclosed a space, giving 2 faces, 1 edge,
and 1 vertex (2 F—1 E41 V=2).

13
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Now, instead, we cross the first line with an-
other, still enclosing nothing, and we get 1 face, 4
edges, and 5 vertices (1 F—4 E+45 V=2). If
they merely met we would get 1 face, 3 edges, and
4 vertices: (again getting 1 F—3 E+44 V=2).
Also we can put any number of arbitrary vertices
on an edge: and each would divide the line into new
edges, giving, in Fig. 17, 1 F—4 E45 V===2.

A L

Fig. 17

When a new line, or edge, meets a loop (a self-
connected edge) at its vertex, we get 2 F—2
E+2 V=2, If not at the vertex we would have
2 F—3 E+43 V=2. Likewise a line meeting a
loop at 2 points gives 3 F—3 E42 V=2 (Fig.
18).

Fig. 18 OK-\J

It is obvious that the only way to get a new face
is by adding at least 1 edge, and this edge must
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either connect with both its ends or be itself a loop:
otherwise it would enclose nothing. Keep in mind
that, although in topology we distort things, in the
following proof we cannot change anything after
it has been drawn. The following apply in all cases
(or figures).

1. If we add a vertex to an edge between vertices,
it divides it: making 1 edge into 2, thus it adds 1
E, canceling the new V, in the expression F—
E4+V.
E
N Fig. 19

2. Add an edge that meets a vertex—its own ver-
tex on the free end cancels the new edge (in F—

E4V).
V “““ ’ Fig. 20

3. Add an edge that meets an edge between ver-
tices: it adds 2 E and 2 V (having divided the
old edge). These cancel as before.
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4. Add an edge with each end meeting a vertex:

itadds 1 Fand 1 E (but no V) and they cancel.

H 3 or

Fig. 22

5. Add an edge with both ends meeting the same
V:itadds 1 F and 1 E, which cancel.

.....

6. Add an edge that meets 1 V and 1 E: it adds 1

F, 2 E, and 1 V, which cancel (1 F—2 E+4
1 V=0).

Fig. 24

7. Add an edge that meets 2 edges: it adds 1 F,
3 E, and 2 V, which cancel (1 F—3 E+42 V=0).

E
Fig. 25

.
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8. Add an edge with both ends meeting at one V in
one edge: it adds 1 F, 2 E, and 1 V, which cancel.

That exhausts all the ways of adding lines and
vertices, and therefore one can draw any figure
made of them, and if it is connected, and on a
simply connected surface, F—E -+ V=2. Thus it
must be true of polyhedra, also. Try it with a com-
plicated figure drawn at random. rmve been
stressing the rule that these figures must be on a
simply connected surface : what happens to Euler’s
theorem when they are on a torus? Remembering
Fig. 6 (page 7), we can see that it breaks down
at once: redrawn in Fig. 27, it shows that 1 F—
2 E41 V=o0. And as we said (page 8), a Jordan
curve can be drawn on the side of the torus and
still divide it into two, but not if it circles, or goes

Fig. 27
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through the hole. In the same way, any of the con-
nected figures we have just discussed can also be
drawn on a torus and the Euler law applies if they
do not connect either around or through the hole.
If these lines represent a polyhedron with a hole,
they will do both, and polyhedra were what Euler
had in mind. The simplest polyhedron with a hole
is shown in Fig. 28—made transparent so as to
show all the edges. It has ¢ faces, 18 edges, and 9
vertices, giving g F—18 E4¢9 V=o0.

Fig. 28 F

Without going into the proof, the above is the
new Euler law for doubly connected surfaces, and
it will work for all figures drawn on them provided
we have at least one line going around the hole, and
one going through it. NoTE: Euler’s law can be
generalized to include any drawing at all that is in
lines and dots: starting with one dot on a sheet of
paper, 1 F—o E41 V=2, we can also include
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disconnected parts if we change the formula to
F—E -+ V—n=2, where # is the number of dis-
connected parts (dots, lines, or figures) minus I.
The reader can prove this by experimentation,
which will disclose the underlying reason for the
formula. The proof turns out to be really quite
simple—after we have it. (It applies, of course,
only to simply connected surfaces.)
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